Solving ill-posed problems with mollification and an application in biometrics
نویسنده
چکیده
This is a thesis about how mollification can be used as a regularization method to reduce noise in ill-posed problems in order to make them well-posed. Ill-posed problems are problems where noise get magnified during the solution process. An example of this is how measurement errors increases with differentiation. To correct this we use mollification. Mollification is a regularization method that uses integration or weighted average to even out a noisy function. The different types of error that occurs when mollifying are the truncation error and the propagated data error. We are going to calculate these errors and see what affects them. An other thing worth investigating is the ability to differentiate a mollified function even if the function itself can not be differentiated. An application to mollification is a blood vessel problem in biometrics where the goal is to calculate the elasticity of the blood vessel’s wall. To do this measurements from the blood and the blood vessel are required, as well as equations for the calculations. The model used for the calculations is ill-posed with regard to specific variables which is why we want to apply mollification. Here we are also going to take a look at how the noise level affects the final result as well as the mollification radius.
منابع مشابه
A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملThe Mollification Method and the Numerical Solution of Ill-Posed Problems (Diego A. Murio)
The mollification method and the numerical solution of ill-posed problems / by Diego A. Murio. p. cm. PREFACE During the last 20 years, the subject of ill-posed problems has expanded from a collection of individual techniques to a highly developed and rich branch of applied mathematics. This textbook essentially builds, from basic mathematical concepts, the understanding of the most important a...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملA New Approach for Solving Heat and Mass Transfer Equations of Viscoelastic Nanofluids using Artificial Optimization Method
The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a c...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018